skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dodge, K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Despite its delicate morphology, the lobate ctenophore Mnemiopsis leidyi thrives in coastal ecosystems as an influential zooplankton predator. Coastal ecosystems are often characterized as energetic systems with high levels of natural turbulence in the water column. To understand how natural wind-driven turbulence affects the feeding ecology of M. leidyi, we used a combination of approaches to quantify how naturally and laboratory generated turbulence affects the behavior, feeding processes and feeding impact of M. leidyi. Experiments using laboratory generated turbulence demonstrated that turbulence can reduce M. leidyi feeding rates on copepods and Artemia nauplii by > 50%. However, detailed feeding data from the field, collected during highly variable surface conditions, showed that wind-driven turbulence did not affect the feeding rates or prey selection of M. leidyi. Additional laboratory experiments and field observations suggest that the feeding process of M. leidyi is resilient to wind-driven turbulence because M. leidyi shows a behavioral response to turbulence by moving deeper in the water column. Seeking refuge in deeper waters enables M. leidyi to maintain high feeding rates even under high turbulence conditions generated by wind driven mixing. As a result, M. leidyi exerted a consistently high predatory impact on prey populations during highly variable and often energetic wind-driven mixing conditions. This resilience adds to our understanding of how M. leidyi can thrive in a wide spectrum of environments around the world. The limits to this resilience also set boundaries to its range expansion into novel areas. 
    more » « less
  2. High-fidelity gate operations are essential to the realization of a fault-tolerant quantum computer. In addition, the physical resources required to implement gates must scale efficiently with system size. A longstanding goal of the superconducting qubit community is the tight integration of a superconducting quantum circuit with a proximal classical cryogenic control system. Here we implement coherent control of a superconducting transmon qubit using a Single Flux Quantum (SFQ) pulse driver cofabricated on the qubit chip. The pulse driver delivers trains of quantized flux pulses to the qubit through a weak capacitive coupling; coherent rotations of the qubit state are realized when the pulse-to-pulse timing is matched to a multiple of the qubit oscillation period. We measure the fidelity of SFQ-based gates to be ~95% using interleaved randomized benchmarking. Gate fidelities are limited by quasiparticle generation in the dissipative SFQ driver. We characterize the dissipative and dispersive contributions of the quasiparticle admittance and discuss mitigation strategies to suppress quasiparticle poisoning. These results open the door to integration of large-scale superconducting qubit arrays with SFQ control elements for low-latency feedback and stabilization. 
    more » « less